(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0), s(0))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0'), s(0'))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
fac(x) → loop(x, s(0'), s(0'))
loop(x, c, y) → if(lt(x, c), x, c, y)
if(false, x, c, y) → loop(x, s(c), times(y, s(c)))
if(true, x, c, y) → y
Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lt,
times,
plus,
loopThey will be analysed ascendingly in the following order:
lt < loop
plus < times
times < loop
(6) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, times, plus, loop
They will be analysed ascendingly in the following order:
lt < loop
plus < times
times < loop
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
+(
1,
n5_0))) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) →RΩ(1)
true
Induction Step:
lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) →RΩ(1)
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, times, loop
They will be analysed ascendingly in the following order:
plus < times
times < loop
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n282_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n282_0,
b)), rt ∈ Ω(1 + n282
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n282_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n282_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c283_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n282_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n282_0, b)), rt ∈ Ω(1 + n2820)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
times, loop
They will be analysed ascendingly in the following order:
times < loop
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s3_0(
n825_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
*(
n825_0,
b)), rt ∈ Ω(1 + b·n825
0 + n825
0)
Induction Base:
times(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s3_0(+(n825_0, 1)), gen_0':s3_0(b)) →RΩ(1)
plus(gen_0':s3_0(b), times(gen_0':s3_0(n825_0), gen_0':s3_0(b))) →IH
plus(gen_0':s3_0(b), gen_0':s3_0(*(c826_0, b))) →LΩ(1 + b)
gen_0':s3_0(+(b, *(n825_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n282_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n282_0, b)), rt ∈ Ω(1 + n2820)
times(gen_0':s3_0(n825_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n825_0, b)), rt ∈ Ω(1 + b·n8250 + n8250)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
loop
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol loop.
(17) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n282_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n282_0, b)), rt ∈ Ω(1 + n2820)
times(gen_0':s3_0(n825_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n825_0, b)), rt ∈ Ω(1 + b·n8250 + n8250)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n825_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n825_0, b)), rt ∈ Ω(1 + b·n8250 + n8250)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n282_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n282_0, b)), rt ∈ Ω(1 + n2820)
times(gen_0':s3_0(n825_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n825_0, b)), rt ∈ Ω(1 + b·n8250 + n8250)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n825_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n825_0, b)), rt ∈ Ω(1 + b·n8250 + n8250)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n282_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n282_0, b)), rt ∈ Ω(1 + n2820)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
fac(
x) →
loop(
x,
s(
0'),
s(
0'))
loop(
x,
c,
y) →
if(
lt(
x,
c),
x,
c,
y)
if(
false,
x,
c,
y) →
loop(
x,
s(
c),
times(
y,
s(
c)))
if(
true,
x,
c,
y) →
yTypes:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
fac :: 0':s → 0':s
loop :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)